

MQSA-28-05S

Doc.# 005-0006200 Rev. D

www.SynQor.com

Phone 1-888-567-9596

02/09/22

Page 1

BLOCK DIAGRAM

TYPICAL CONNECTION DIAGRAM

MQSA-28-05S

Synce	D	B			MQSA-28-059 Output: 5.0 V Current: 1.0 A	
Lechnical Spech		JON 2101		EDT	STICS	
Parameter	Min.	Typ.	Max.	Units	Notes & Conditions	Group A
Specifications are subject to change without notice.					Vin=28 V dc \pm 5%, Iout=1.0 A, CL=0 μ F, free running (see Note 10) unless otherwise specified.	Subgroup
ABSOLUTE MAXIMUM RATINGS						
Input Voltage			60			
Operating			50			
Reverse Bias (Tcase = 125°C)			-0.8	V		
Reverse Bias (Tcase = $-55^{\circ}C$)			-1.2	V		
Isolation Voltage (I/O to case, I to O)	500		500			
Transient (<100 us)	-500		800			
Operating Case Temperature	-55		125	°C	HB Grade Products, See Notes 1 & 10	
Storage Case Temperature	-65		135	°C		1
Lead Temperature (20 s)	12		300	°C		
	-1.2					
Operating Input Voltage Range	16	28	40	V	Continuous	1, 2, 3
"	16	28	50	V	Transient, 1 s	_, _, _
Input Under-Voltage Lockout		11.00	15.00		See Note 2	
Turn-On Voltage Threshold	14.00	14.60	15.20			1, 2, 3
Lockout Voltage Hysteresis	12.00	1 75	15.70			1, 2, 3
Input Filter Component Values (L\C)		2.2\1.5		μΗ\μF	Internal Values	
Maximum Input Current			0.43	A	Vin = 16 V; Iout = 1 A	1
No Load Input Current (operating)		15	30	mA		1, 2, 3
Disabled Input Current (INH)	-	2	4	mA mA	Bandwidth - 100 kHz - 10 MHz; see Figure 14	1, 2, 3
OUTPUT CHARACTERISTICS		50	55	IIIA		1, 2
Output Voltage Set Point (Tcase = 25°C)	4.95	5.00	5.05	V	Vout at output pins	1
Vout Set Point Over Temperature	4.92	5.00	5.08	V	n	2, 3
Output Voltage Line Regulation	-20	0	20	mV	$\frac{1}{2}$	1, 2, 3
Total Output Voltage Range	4 90	5.00	5 10	V	", vout @ (100t=0 A) - vout @ (100t=1 A)	1, 2, 3
Vout Ripple and Noise Peak to Peak		25	45	mV	Bandwidth = 10 MHz; CL=11µF	1, 2, 3
Operating Output Current Range	0		1	A		1, 2, 3
Operating Output Power Range	0	2.0	5	W	Cap Note 2	1, 2, 3
Maximum Output Canacitance	1.5	2.0	2./		See Note 3	1, 2, 3
DYNAMIC CHARACTERISTICS			21	μι		T See Note T
Output Voltage Deviation Load Transient					See Note 5	
For a Pos. Step Change in Load Current	-450	-200	450	mV	Total Iout step = $0.5A <->1A$, $1A <->0.5A$; CL= 0.1μ F	4, 5, 6
Output Voltage Deviation Line Transient		200	450	mv	Vin step = $16V_{(-)}50V_{(-)}CI = 0.1 \mu E$; see Note 6	4, 5, 6
For a Pos. Step Change in Line Voltage		50		mV	1000, 000, 000, 000, 000, 000, 000, 000	
For a Neg. Step Change in Line Voltage		50		mV	n	
Turn-On Transient		1.5				1.5.6
Output Voltage Rise Time		1.5	2	ms 0/-	Vout = 0.5V->4.5V; Full Resistive Load	4, 5, 6
Turn-On Delay, Rising Vin		2.0	2	ms	Enable = 5 V: see Notes 7	4, 5, 6
Turn-On Delay, Rising Inhibit		1.0	5.0	ms	See Note 7	4, 5, 6
EFFICIENCY						
Iout = 1 A (16 Vin)	76	80		%		1 2 2
100L = 1 A (28 VIII)	1 /6	1 80		I %	1	1 1, 2, 3

Phone 1-888-567-9596

		®			MQSA-28-059	
				A -	Output: 5.0 V	Ma -
				T	Current: 1.0 A	1 Call
Technical Specifi	ica	tion		-	and the second	4
MOSA-28-055 ELECTRIC		ТНАС		FDI	STICS (Continued)	
Parameter	Min.	Tvp.	Max.	Units	Notes & Conditions	Group A
Specifications are subject to change without notice.					Vin=28 V dc \pm 5%, Iout=1.0 A, CL=0 μ F, free running (see Note 10)	Subgroup
ISOLATION CHARACTERISTICS						(see Note 0)
Isolation Voltage					Dielectric strength	
Input RTN to Output RTN	500			V		1
Any Input Pin to Case	500			V		1
Any Output Pin to Case	500			V		1
Isolation Resistance (in rtn to out rtn)	100			MΩ		1
Isolation Resistance (any pin to case)	100			MΩ		1
Isolation Capacitance (in rtn to out rtn)		1000		pF		1
FEATURE CHARACTERISTICS						
Switching Frequency (free running)	500	550	600	kHz		See Note 4
Enable Control (Inhibit)						
Off-State Voltage			0.14	V		1, 2, 3
Module Off Pulldown Current	0.7			mA	Current drain required to ensure module is off	See Note 4
On-State Voltage	2			V		1, 2, 3
Module On Pin Leakage Current			20	μA	Imax draw from pin allowed with module still on	See Note 4
Pull-Up Voltage	1.0	2.4	4.2	V	Dependent on Vin. See Figure A	
RELIABILITY CHARACTERISTICS						
Calculated MTBF (MIL-STD-217F2)						
GB @ Tcase = 70°C		6.4		10 ⁶ Hrs.		
AIF @ Tcase = 70°C		0.378		10 ⁶ Hrs.		
WEIGHT CHARACTERISTICS						
Device Weight		15.7		g		

Electrical Characteristics Notes

Derate output power to 50% of rated power at Tcase = 135° C.
Low state of input voltage must persist for about 200µs to be acted on by the lockout circuitry.

3. Current limit inception is defined as the point where the output voltage has dropped to 90% of its nominal value.

4. Parameter not tested but guaranteed to the limit specified.

5. Load current transition time $0.01A/\mu s$.

6. Line voltage transition time $\geq 100 \ \mu s$.

7. Input voltage rise time $\leq 250 \ \mu$ s. 8. Only the ES and HB grade products are tested at three temperatures. The C grade products are tested at one temperature. Please refer to the ESS table for details.

9. These derating curves apply for the ES and HB grade products. The C grade product has a maximum case temperature of 70° C and a maximum junction temperature rise of 20° C above TCASE.

10. The specified operating case temperature for ES grade products is -45°C to 100°C. The specified operating case temperature for C grade products is 0°C to 70°C.

Technical Figures

Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at Tcase=25°C.

Figure 3: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at Tcase=25°C.

Figure 5: Output Current / Output Power derating curve as a function of Tcase and the Maximum desired power MOSFET junction temperature at Vin = 28V (see Note 9).

Figure 2: Efficiency at nominal output voltage and 60% rated power vs. case temperature for input voltage of 16V, 28V, and 40V.

Figure 4: Power dissipation at nominal output voltage and 60% rated power vs. case temperature for input voltage of 16V, 28V, and 40V.

Figure 6: Output voltage vs. load current showing typical current limit curves.

Figure 7: Turn-on transient at full resistive load and zero output capacitance initiated by ENA1. Input voltage pre-applied. Ch 1: Vout (2V/div) (5mS/div). Ch 2: ENA1 (2V/div).

Figure 9: Turn-on transient at full resistive load and zero output capacitance initiated by Vin. ENA1 previously high. Ch 1: Vout (2V/div) (10mS/div). Ch 2: Vin (20V/div).

Figure 11: Output voltage response to step-change in load current 10%-50%-10% of Iout (max). Load cap: $.1\mu$ F ceramic cap and 4.7μ F, tantalum cap. Ch 1: Vout (200mV/div) (500uS/div). Ch 4: Iout (500mA/div).

Figure 8: Turn-on transient at full resistive load and 37uF output capacitance initiated by ENA1. Input voltage pre-applied. Ch 1: Vout (2V/div) (5mS/div). Ch 2: ENA1 (2V/div).

Figure 10: Output voltage response to step-change in load current 50%-100%-50% of lout (max). Load cap: $.1\mu$ F ceramic cap and 4.7μ F, tantalum cap. Ch 1: Vout (200mV/div) (500uS/div). Ch 2: lout (500mA/div).

Figure 12: Output voltage response to step-change in input voltage (28V - 40V - 28V) in 100µS. Ch 1: Vout (50mV/div) (1mS/div). Ch 2: Vin (20V/ div).

Syncol Technical Figures

MQSA-28-05S Output: 5.0 V Current: 1.0 A

Figure 13: Test set-up diagram showing measurement points for Input Terminal Ripple Current (Figure 14) and Output Voltage Ripple (Figure 15). Input filter inductor = 0.47uH and Input filter capacitor = 27uF.

	Mulauna	Margarit	Wulimbu.			MMM	Mnus.	www.	Marie
L. AMMAN.	i - stradi	llana	, li ti bave	WM	TT THE	A		[
· · · · · · · · · · · · · · · · · · ·				AND IN THE REAL PROPERTY OF				··········	

Figure 15: Output voltage ripple, Vout, at nominal input voltage and rated load current (20mV/div) (1uS/div). Load capacitance: $.1\mu$ F and $.47\mu$ F ceramic capacitors. Bandwidth: 20MHz. See Figure 13.

Figure 14: Input terminal current ripple, ic, at full rated output current and nominal input voltage with SynQor MQ filter module (10mA/div) (1uS/div). Bandwidth: 20MHz. See Figure 13.

Figure 16: Rise of output voltage after the removal of a short circuit across the output terminals. Ch 1: Iout (5A/Div) (5mS/div). Ch 2: Vout (2V/div).

MQSA-28-05S Output: 5.0 V

Current: 1.0 A

Technical Figures

Figure 17: Magnitude of incremental output impedance (Zout = vout/ iout) for minimum, nominal, and maximum input voltage at full rated power.

Figure 19: Magnitude of incremental reverse transmission (RT = iin/iout) for minimum, nominal, and maximum input voltage at full rated power.

Figure 18: Magnitude of incremental forward transmission (FT = vout/ vin) for minimum, nominal, and maximum input voltage at full rated power.

Figure 20: Magnitude of incremental input impedance (Zin = vin/iin) for minimum, nominal, and maximum input voltage at full rated power.

Doc.# 005-0006200 Rev. D

BASIC OPERATION AND FEATURES

The MQSA DC/DC converter uses a single stage power conversion topology. A flyback-converter is used to keep the output voltage constant over variations in line, load, and temperature. The converter switches at a fixed frequency for predictable EMI performance. Rectification of the output is accomplished with diodes.

An input under-voltage shutdown feature with hysteresis is provided, as well as an output over-voltage limit. There is also an output current limit that is nearly constant as the load impedance decreases. When a load fault is removed, the output voltage rises exponentially to its nominal value with minimal overshoot.

The following sections describe the use and operation of additional control features provided by the MQSA converter.

CONTROL FEATURES

ENABLE: The MQSA converter has one enable pin, ENA (pin 5), which is referenced with respect to the converter's input return (pin 7). It must be floating (OPEN) for the converter to be enabled; shorting the pin to INPUT RETURN disables the converter. Hysteresis on the ENA pin ensures the converter starts predictably.

The enable pin is internally pulled high so that an open connection will enable the converter. The enable pin must not be driven by a 5V or 3.3V logic gate. Applying voltage to the ENA pin will affect the UVLO limits of the converter. To disable the converter, pull the enable pin to INPUT RETURN with a FET. A BJT may be used if VCE is smaller than 0.14 V. Figure A shows the equivalent circuit looking into the enable pin.

SHUT DOWN: The MQSA converter will shut down in response to only three conditions: ENA input low, VIN input below under-voltage shutdown threshold, and output voltage above the output over-voltage threshold.

Figure A: Circuit diagram shown for reference only, actual circuit components may differ from values shown for equivalent circuit.

INPUT UNDER-VOLTAGE SHUTDOWN: The MQSA converter has an under-voltage shutdown feature that ensures the converter will be off if the input voltage is too low. The input voltage turn-on threshold is higher than the turn-off threshold.

OUTPUT OVER-VOLTAGE SHUTDOWN: The MQSA converter will shut down if the voltage at its power output pins ever exceeds about 130% of the nominal value.

CURRENT LIMIT: In the event of excess load, the MQSA converter will quickly reduce its output voltage to keep the load current within safe limits.

If the converter is connected to an external heatsink, the heatsink will help to make the converter's case top a uniform temperature. How well it does so depends on the thickness of the heatsink and on the thermal conductance of the interface layer (e.g. thermal grease, thermal pad, etc.) between the case and the heatsink. Unless this is done very well, it is important not to mistake the heatsink's temperature for the maximum case temperature. It is easy for them to be as much as 5-10°C different at full power and at high temperatures. It is suggested that a thermocouple be attached directly to the converter's case through a small hole in the heatsink when investigating how hot the converter is getting. Care must also be made to ensure that there is not a large thermal resistance between the thermocouple and the case due to whatever adhesive might be used to hold the thermocouple in place.

INPUT SYSTEM INSTABILITY: This condition can occur because any dc-dc converter appears incrementally as a negative resistance load. A detailed application note titled "Input System Instability" is available on the SynQor website which provides an understanding of why this instability arises, and shows the preferred solution for correcting it.

THERMAL CONSIDERATIONS: Figure 5 shows the suggested Power Derating Curves for this converter as a function of the case temperature and the maximum desired power MOSFET junction temperature. All other components within the converter are cooler than its hottest MOSFET, which at full power is no more than 20°C higher than the case temperature directly below this MOSFET.

The Mil-HDBK-1547A component derating guideline calls for a maximum component temperature of 105°C. Figure 5 therefore has one power derating curve that ensures this limit is maintained. It has been SynQor's extensive experience that reliable long-term converter operation can be achieved with a maximum component temperature of 125°C. In extreme cases, a maximum temperature of 145°C is permissible, but not recommended for long-term operation where high reliability is required. Derating curves for these higher temperature limits are also included in Figure 5. The maximum case temperature at which the converter should be operated is 135°C.

CONSTR	UCTION AND ENVIRONM	IENTAL STRESS SCR	REENING OPTIONS	
Screening	Consistent with MIL-STD-883F	C-Grade (specified from 0 °C to +70 °C)	ES-Grade (specified from (-45 °C to +100 °C)	HB-Grade (specified from (-55 °C to +125 °C)
Element Evaluation		No	Yes	Yes
Internal Visual	IPC-A-610 Class 3	Yes	Yes	Yes
Temperature Cycle	Method 1010	Method 1010 No		Condition C (-65 °C to +150 °C)
Constant Acceleration	Method 2001 (Y1 Direction)	No	500 g	Condition A (5000 g)
Burn-in	Method 1015	24 Hrs @ +125 °C	96 Hrs @ +125 °C	160 Hrs @ +125 °C
Final Electrical Test	Method 5005 (Group A)	+25 °C	-45, +25, +100 °C	-55, +25, +125 °C
Mechanical Seal, Thermal, and Coating Process			Full QorSeal	Full QorSeal
External Visual	Method 2009	Yes	Yes	Yes
Construction Process			QorSeal	QorSeal

MilQor[®] Hi-Rel converters and filters are offered in three variations of environmental stress screening options. All ES-Grade and HB-Grade MilQor Hi-Rel converters use SynQor's proprietary QorSeal[®] Hi-Rel assembly process that includes a Parylene-C coating of the circuit, a high performance thermal compound filler, and a nickel barrier gold plated aluminum case. Each successively higher grade has more stringent mechanical and electrical testing, as well as a longer burn-in cycle. The ES- and HB-Grades are also constructed of components that have been procured through an element evaluation process that pre-qualifies each new batch of devices.

Support Technical Specifications

MQSA-28-05S Output: 5.0 V Current: 1.0 A

MIL-STD-810F Qualification Testing

MIL-STD-810F Test	Method	Description			
Fungus	508.5	Table 508.5-I			
	500.4 - Procedure I	Storage: 70,000 ft / 2 hr duration			
Altitude	500.4 - Procedure II	Operating: 70,000 ft / 2 hr duration; Ambient Temperature			
Rapid Decompression	500.4 - Procedure III	Storage: 8,000 ft to 40,000 ft			
Acceleration	513.5 - Procedure II	Operating: 15 g			
Salt Fog	509.4	Storage			
	501.4 - Procedure I	Storage: 135 °C / 3 hrs			
High lemperature	501.4 - Procedure II	Operating: 100 °C / 3 hrs			
	502.4 - Procedure I	Storage: -65 °C / 4 hrs			
Low lemperature	502.4 - Procedure II	Operating: -55 °C / 3 hrs			
Temperature Shock	503.4 - Procedure I - C	Storage: -65 °C to 135 °C; 12 cycles			
Rain	506.4 - Procedure I	Wind Blown Rain			
Immersion	512.4 - Procedure I	Non-Operating			
Humidity	507.4 - Procedure II	Aggravated cycle @ 95% RH (Figure 507.5-7 aggravated temp - humidity cycle, 15 cycles)			
Random Vibration	5 <mark>14.5</mark> - Procedure I	10 - 2000 Hz, PSD level of 1.5 g ² /Hz (54.6 g _{rms}), duration = 1 hr/axis			
Check	516.5 - Procedure I	20 g peak, 11 ms, Functional Shock (Operating no load) (saw tooth)			
SHOCK	516.5 - Procedure VI	Bench Handling Shock			
Sinusoidal vibration	514.5 - Category 14	Rotary wing aircraft - helicopter, 4 hrs/axis, 20 g (sine sweep from 10 - 500 Hz)			
Sand and Duct	510.4 - Procedure I	Blowing Dust			
Sanu dhu Dust	510.4 - Procedure II	Blowing Sand			

Page 11

Support Technical Specifications

MQSA-28-05S Output: 5.0 V Current: 1.0 A

United

First Article lesting consistent with WIL-SID-883F						
MIL-STD-883F Test	Method	Description				
Electrical Tests	5005					
Physical Dimensions test	2016					
Resistance to Solvents test	2015.13					
Solderability test	2003.8					
Lead Integrity test	2004.5					
Salt Atmosphere test	1009.8	Condition "A"				
Adhesion of Lead Finish test	2025.4					
Altitude Operation test	1001	Condition "C"				
ESD Sensitivity	3015.7	Class 2				
Stabilization Bake test	1008.2	Condition "C"				
Vibration Fatigue test	2005.2	Condition "A"				
Random Vibration test	2026	Condition "II K"				
Sequential Test Group #1						
Life Test – Steady State test	1005.8					
Life Test – Intermittent Duty test	1006					
Sequential Test Group #2						
Temperature Cycle test	1010.8	Condition "C"				
Constant Acceleration test	2001.2	Condition "A"				
Sequential Test Group #3						
Thermal Shock test	1011.9	Condition "B"				
Temperature Cycle test	1010.8	Condition "C"				
Moisture Resistance test	1004.7	With Sub cycle				
Sequential Test Group #4						
Mechanical Shock test	2002.4	Condition "B"				
Variable Frequency Vibration test	2007.3	Condition "A"				

MQSA-28-05S Output: 5.0 V Current: 1.0 A Mechanical Diagrams 0.400 [10,16] -Pin I 0.200 [5,08] I.075 [27,31] MAX-0.132 [3,35] Pin I 10 (0) SynQor \bigcirc 8 8 0 1 MQSA-28-05S-S-ES (0) 2 2 0.600 DC/DC CONVERTER [15,24] |.075 [27,3|] 28 Vin 5.0 Vout @ 1.0 A (\bigcirc) 3 7 0.800 (0) 7 3 MÁX S/N 123456789 [20,32] D/C 3210-100 CAGE 1WX10 4 (0) 4 5 6 0 6 \bigcirc 5 0 O, 0.132 [3,35] 0.205 - 0.800 [20,32] -[5,21] 0.270 [6,86] MAX

NOTES

- 1) Pins 0.025" (0.64mm) diameter
- 2) Pins Material: Copper Alloy Finish: Gold over Nickel Plate
- All dimensions in inches (mm) Tolerances: x.xx +/-0.02 in. (x.x +/-0.5mm) x.xxx +/-0.010 in. (x.xx +/-0.25mm)
- 4) Weight: 0.55 oz (15.7 g) typical
- 5) Workmanship: Meets or exceeds IPC-A-610 Class III
- 6) Print Labeling on Top Surface per Product Label Format Drawing

PIN DESIGNATIONS

Pin #	Function
1	Positive output
2	Output return
3	No Connection
4	No Connection
5	Enable
6	Positive input
7	Input return
8	Case

MilQor Converter FAMILY MATRIX

The tables below show the array of MilQor converters available. When ordering SynQor converters, please ensure that you use the complete part number according to the table in the last page. Contact the factory for other requirements.

	S	Single	Outpu	t
	5V	12V	15V	28V
	(05S)	(125)	(15S)	(28S)
MQSA-28				
16-40Vin Cont.	10	0.424	0.224	0.104
16-50Vin 1s Trans.*	IA	0.42A	0.33A	0.16A
Absolute Max Vin = 60V				
MQSA-28E				
16-70Vin Cont.	1.0	0.424	0 22 4	0.19.4
16-80Vin 1s Trans.*	IA	0.42A	0.33A	0.16A
Absolute Max Vin =100V				

Dua	l Outp	ut †
5V	12V	15V
(05D)	(12D)	(15D)
1A Total	0.42A Total	0.33A Total
1A Total	0.24A Total	0.33A Total

	Single Output								Dual Output [†]					
	1.5V	1.8V	2.5V	3.3V	5V	6V	7.5V	9V	12V	15V	28V	5V	12V	15V
	(1R5S)	(1R8S)	(2R5S)	(3R3S)	(05S)	(06S)	(7R5S)	(09S)	(125)	(15S)	(28S)	(05D)	(12D)	(15D)
MQBL-28														
16-40Vin Cont.	0 ^	0 ^	0 ^	64	4.0	2.24	264	2.24	1.64	1 2 4	0.74	4A	1.6A	1.3A
16-50Vin 1s Trans.*	оA	оA	оA	8A 6A	6A 4A	4A 5.5A	3.3A 2.0A	2.2A	1.0A	1.0A 1.3A 0.77	0.7A	Total	Total	Total
Absolute Max Vin = 60V														
MQBL-28E														
16-70Vin Cont.	0.4	0.4	0.4	6.4	10	2.24	2.64	2.24	1.64	1 2 4	0.74	4A	1.6A	1.3A
16-80Vin 1s Trans.*	оA	оA	оA	bА	4A	3.3A	2.0A	Z.ZA	1.0A	1.5A	0.7A	Total	Total	Total
Absolute Max Vin =100V														

Check with factory for availability. †80% of total output current available on any one output. *Converters may be operated at the highest transient input voltage, but some component electrical and thermal stresses would be beyond MIL-HDBK-1547A guidelines.

PART NUMBERING SYSTEM

The part numbering system for SynQor's MilQor DC-DC converters follows the format shown in the table below.

Not all combinations make valid part numbers, please contact SynQor for availability. See the Product Summary web page for more options.

Model	Input	Output Voltage(s)		Input Output Voltage(s) Package Outline/		Package Outline/	Screening
Name	Voltage Range	Single Output	Dual Output	Pin Configuration	Grade		
MQSA	28 28E	05S 12S 15S 28S	05D 12D 15D	S	C ES HB		

Example: MQSA-28-05S-S-ES

APPLICATION NOTES

A variety of application notes and technical white papers can be downloaded in pdf format from the SynQor website.

Contact SynQor for further information and to order:

<u>Phone</u> :	978-849-0600
Toll Free:	1-888-567-9596
Fax:	978-849-0602
<u>E-mail</u> :	mqnbofae@synqor.com
Web:	www.synqor.com
Address:	155 Swanson Road
	Boxborough, MA 01719
	USA

Warranty

SynQor offers a two (2) year limited warranty. Complete warranty information is listed on our website or is available upon request from SynQor.